Computational Freakonomics:
Computational Tools for Social Studies Analysis

Mark Guzdial and Richard Catrambone
College of Computing and School of Psychology
Georgia Institute of Technology

June 18, 2006
Contents

List of Program Examples iv

List of Figures v

1 Starting Python and Reading Files 1
1.1 Starting with Python and SciPy 1
1.2 Reading Files ... 5
1.3 How CSVfile Works 9

2 Plotting 13
2.1 Your Basic Plot: Slicing Up The World's Population 13
2.2 Options on the Plot 17
2.3 The Plot Thickens: Combining Plots to Determine US and
 UK Growth Rates .. 19

3 Descriptive Statistics 25
3.1 Average or mean: Petroleum Tax Prices 25
3.2 Standard Deviation 27
3.3 Histogram ... 29

4 Correlation 31
4.1 Computing correlation: Is it the company, or war in the Mid-
 dle East? .. 31
4.2 But do we believe it? 35

5 Text Analysis 41
5.1 Visualizing textual differences: Bacon v. Shakespeare 41
5.2 Counting Text Patterns 49

6 Hypothesis Testing 55
6.1 The Context: Elections and Unemployment Rates 55
6.2 T-Test .. 56
6.3 ANOVA: Analysis of Variance 59
A Program Listings 65
 A.1 CVSfile . 65
 A.2 fancierplot.py – a run-able plot 66
 A.3 US-UK Population Plot for years 1999–2000 66
 A.4 Exploring British and American Petroleum Company Stock
 Prices . 68
 A.5 Text Analysis: Shakespeare or Bacon? 71
 A.6 Hypothesis Testing: Does the unemployment rate make the
 President? . 73

Bibliography 77

Index 79
List of Program Examples
List of Figures

1.1 Starting iPython on Windows .. 3
1.2 Running the first plot on Mac OS X 4
1.3 Running the first plot on Windows 5
1.4 Example CSV data from World Economics Dataset 6

2.1 Our first graph–countries’ populations, unsorted 15
2.2 Sorted countries’ populations 16
2.3 A graph generated with X and Y values 18
2.4 Making a fancier plot .. 20
2.5 US and UK Populations, as two subplots 24

3.1 BP and Exxon-Mobil stock prices in 1990, as histograms 30

4.1 Uniform distribution ... 37
4.2 Normal distribution ... 38

5.1 Francis Bacon’s essays with white background, ‘the’ highlighted 43
5.2 Francis Bacon’s essays with black background, ‘the’ highlighted 45
5.3 Comparing ‘the’ patterns in Bacon’s Essays and Shakespeare’s Macbeth ... 46
5.4 Visualization of all capitalized letters in the Essays of Francis Bacon ... 50
1 Starting Python and Reading Files

These are the course notes for the class *Computational Freakonomics* which we're teaching at the Georgia Tech Study Abroad program at Oxford University in the Summer 2006. The book *Freakonomics: A rogue economist explores the hidden side of everything* [Levitt and Dubner, 2005] (http://www.freakonomics.com/) by Steven D. Levitt and Stephen J. Dubner is a NY Times Bestseller that uses economic methods for studying social questions. In the six weeks of this class, we'll:

- Read and discuss each of the six chapters
- Learn social science methods used in that chapter (led by psychologist Richard Catrambone)
- Learn computer science tools for implementing that method on live data (led by computer scientist Mark Guzdial)

These course notes provide the details on the computational side of the course so that students have examples of syntax and semantics to work from. Why *computational* Freakonomics? Because it's the computational side that makes it interesting. Using computation, we can access real and authentic data—like the data used in Freakonomics. Using computation, we can work with many more data points than we could manipulate by hand—just like in Freakonomics.

1.1 Starting with Python and SciPy

You'll find the details on getting Python started up at the class website http://swiki.cc.gatech.edu/CompFreak. We are going to be using a particular branch of Python, *SciPy*\(^1\) or Scientific Python. SciPy includes *NumPy* for numeric processing and *Matplotlib*\(^2\) for graphical visualization. There is documentation for all these components available at the course

\(^1\)http://www.scipy.org
\(^2\)http://matplotlib.sourceforge.net/
website. The combination allows us to work with Freakonomics-sized data and Freakonomics-style analyses.

These course notes are not meant to be a tutorial on Python. It’s assumed that:

- Either you had CS1315 or CS1321, and thus met Python already, or
- You know enough about programming from CS1371 that you can pick up Python from these course notes and using other documentation linked to http://www.python.org. Matplotlib, in particular, was designed to make it easy to pick up if you know Matlab.

Windows

For Windows, your best bet is to use the *Enthought Python* which has all the pieces already in it for scientific processing (such as data analysis and graphing). I store Enthought at C:/Enthought.

Once you install Enthought Python, you can start it from a Command Prompt in Windows by simply typing `python` and hitting return. An option that you have in Enthought, though, is using *iPython*. iPython is especially designed to make it easy to use Matplotlib.

iPython is located in the *Scripts* folder in the Enthought directly, like this:

![Directory of C:\Enthought\Scripts](image)

^When you read “I” in the computational parts, you can presume that it’s Mark Guzdial speaking.
1.1. STARTING WITH PYTHON AND SCIPY

You start iPython, then, by:

- If you choose, you can first `cd` to whatever directory you want to work in. (This isn't absolutely necessary, as we'll see in the next chapter.)

- Starting iPython as an input to `python` with the argument `−−pylab` to get it ready to work with Matplotlib (Figure 1.1).

- Alternatively, if you have the Enthought installation, simply choose iPython from the START−ALL PROGRAMS menu. Then you can `cd` from there to where you want to be. (Be sure to just type `cd` first, to get to your home directory, then `cd` down into your desired directory.)

![Figure 1.1: Starting iPython on Windows](image)

Macintosh

Getting a Macintosh Python setup is a very similar process. The closest thing to an Enthought Python on Macintosh is the ActivePython available at http://www.activestate.com/. Download that and install it.

If you just type `python` into a Terminal window (the Macintosh equivalent of a Command Prompt), it will work, but it won't be ActivePython. ActivePython installs itself slightly differently, so that you run it from `/usr/local/bin/python` like this:

```bash
$ python
$ /usr/local/bin/python
$ python
```

ActivePython 2.4.3 Build 11 (ActiveState Software Inc.) based on Python 2.4.3 (Wed, Apr 3 2005, 18:07:16)

 GCC 3.3 20040304 (Apple Computer, Inc. build 1666) on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import numpy

Assuming that you’re running Mac OS X 10.4 (the latest version), you can download and install the SciPy-Superpack from http://homepage.
mac.com/fonnesbeck/mac/index.html. This will include NumPy and Matplotlib.

Testing the Installation

Here’s how you test your installation. Start up Python. (On Macs, remember that you’ll use /usr/local/bin/python.) Load in Matplotlib by typing `from pylab import *` and hitting return. (On Macs, the first time you do all these things, you’ll get errors. Ignore them, and keep going. After you restart your computer, you won’t see them anymore.) Then do `plot([1,2,3,4])` (or some other numbers. If you’re using iPython, the graph will now appear. For everyone else, you’ll also have to `show()`, and this should work on both Macs (Figure 1.2) and Windows (Figure 1.3)

It looks something like the below:

Python 2.3.5 - Enthought Edition 0.9.6 (#62, May 11 2005, 20:02:58)
[MSC v.1200 32 bit (Intel)] on win32 Type "help", "copyright",
"credits" or "license" for more information.
>>> from pylab import *
>>> plot([1,2.5,3.5,6])
[<matplotlib.lines.Line2D instance at 0x01B26418>]
>>> show()
1.2 Reading Files

It's pretty easy to read and write files in Python.

```python
>>> # Writing a file
>>> file = open("SampleFile.txt","wt")
>>> file.write("Here is some text!\n")
>>> file.close()
>>> # Reading a File
>>> newfile = open("SampleFile.txt","rt")
>>> newfile.read()
'Here is some text!\n'
>>> newfile.close()
```

Typically, I keep all my data files and Python files in one directory. Before I start Python, I `cd (change directory)` into that directory, and then start `python`. Then, all my files can be accessed without using long paths to special places on the disk.
We’re mostly going to deal with CSV (Comma Separated Values) files in this class. Many of the data sources that one might find on the Internet can produce files of this sort. In this example, I generated a data set from the World Economic Dataset at http://pwt.econ.upenn.edu/php_site/pwt_index.php (Figure 1.4). I then copied the text, opened Notepad, pasted the text into a file, then saved it as somefile.csv.

![At any time, you may change the input format by selecting other format.](comma separated values | csv)

To return to the previous page, please don’t use the BACK button of your browser. Click here.

help on how to use the data

Figure 1.4: Example CSV data from World Economics Dataset

There are tools built in to Python for handling CSV data. You simply type `import csv` and the package is available. You might be wondering “import csv? Didn’t we do from pylab import * a few minutes ago? What’s the difference?” When you use `import csv`, you then have to access all the parts of the module `csv` with a *dot operator*, e.g., `csv.reader`. When you do `from pylab import *`, you can access the parts of module `pylab` just as if they were global (accessible from anywhere, any object) functions, e.g., `plot([1,2,3])`. Sounds like `from...import` is the best way of doing it, right? That depends on whether you’re fixing the code yet. If you have to fix the code, you can update the module in Python by executing `reload(csv)`. If you use `from...import`, you can’t. When you’re developing your own code, it’s often better to `import` so that you can later `reload`.

Here is the start of a dataset I created of 168 nations’ population in the year 2000.

The CSV package knows about how to read individual lines of a CSV file. You open the file, but use that file to create a reader that knows about how to figure out the lines in the file and return the individual pieces in a way that's easily indexable.

```python
>>> headerFile = csv.reader(open("pops-2000.csv","rb"))
>>> headerFile.next()
['country', 'country isocode', 'year', 'POP']
>>> headerFile.next()
['Angola', 'AGO', '2000', 'na']
>>> headerFile.next()
['Albania', 'ALB', '2000', '3411']
>>> line = headerFile.next()
>>> line[0]
'Argentina'
>>> line[1]
'ARG'
>>> line[2]
'2000'
>>> float(line[2]) #converts it to be a number
2000.0
```

But even that's not the easiest way to deal with a CSV file. If you assume that the top line is a list of fieldnames (as is common in well-formed CSV files), then you can use a special csv.DictReader to return lines that know what's inside them.

```python
>>> headerFile = csv.reader(open("pops-2000.csv","rb"))
>>> headers = headerFile.next()
>>> headers
['country', 'country isocode', 'year', 'POP']
>>> data = csv.DictReader(open("pops-2000.csv","rb"),fieldnames=headers)
>>> data.next()
{'country': 'country', 'country isocode': 'country isocode', 'POP': 'POP', 'year ': 'year'}
>>> data.next()
{'country': 'Angola', 'country isocode': 'AGO', 'POP': 'na', 'year': '2000'}
>>> nextline=data.next()
>>> nextline['country']
'Albania'
>>> nextline['POP']
'3411'
>>> nextline['year']
'2000'
>>> nextline.get('country')
'Albania'
```
What next() is returning is a dictionary. You can access the dictionary by fieldname, as you can see. You can treat the filenames as indices with square brackets, or using the method get.

Using CSVfile

That’s actually enough for you to be able to start downloading and playing with data, but I’ve tried to make it a little easier. I’ve created a package called csvfile (Program Program Example #1) that knows about headers and such and provides arrays of data for analysis.

```python
>>> import csvfile
>>> popdata = csvfile.CSVfile("pops-2000.csv")
>>> popdata.headers
dict_keys(["country", "country isocode", "year", "POP"])
>>> popdata = csvfile.CSVfile("pops-2000.csv")
>>> usa = popdata.getRows("country isocode", "USA")
>>> usa
[{'country': 'United States', 'country isocode': 'USA', 'POP': '275423', 'year': '2000'}]
>>> usa[0]  # just returns the dictionary
{'country': 'United States', 'country isocode': 'USA', 'POP': '275423', 'year': '2000'}
>>> usa[0]["POP"]
'275423'
```

How do we re-execute lines like popdata = csvfile.CSVfile("pops-2000.csv") so easily? Just press up-arrow. That will allow you to see all the lines you’ve entered. Hit return on the one you want to execute again. You can also use left and right arrow keys to edit the line before re-executing it.

Where getRows returns all rows (dictionaries) where the field has that value, there is also a method to return a column of all values of a given field.

```python
>>> popdata = csvfile.CSVfile("pops-2000.csv")
>>> pops = popdata.getColumn("POP")
>>> pops[0]
-1
>>> pops[1]
3411.0
>>> pops[2]
37032.0
```

column always returns a bunch of numbers. If there is something that isn’t a number in the list (say, the field name “POP”), then a default
value of -1 is provided. getColumn is a great tool for getting lists of numbers that we might want to plot—see next chapter.

After doing any of these analyses, the CSVfile needs to be rewound. To do the analysis, the file gets read. If you want to do a new search through the data file, you need to rewind to the beginning of the file to do a new search.

```python
>>> popdata = csvfile.CSVfile("pops-2000.csv")
>>> usaPop = popdata.getRows('country isocode,'USA')[0]['POP']
File "<stdin>"", line 1
    usaPop = popdata.getRows('country isocode,'USA')[0]['POP']
    SyntaxError: invalid syntax
>>> #Forgot the ending quote!
>>> usaPop = popdata.getRows('country isocode','USA')[0]['POP']
>>> usaPop
'275423'
>>> csvfile.number(usaPop) #We can use the number converter here
275423.0
>>> popdata.rewind() #Here's the rewind
>>> ausPop = popdata.getRows('country','Australia')[0]['POP']
>>> ausPop
'19157'
```

1.3 How CSVfile Works

CSVfile will get you started, but at some point, you will have to deal with more complex analyses and data manipulation than it will allow. At that point, you will be writing code like CSVfile. It’s worthwhile understanding how it works.

CSVfile is written as a class from which you create objects that understand various methods and have various fields or instance variables associated with them.

```
import csv

def number(input, default=-1):
    try:
        return float(input)
    except:
        return default
```

\[\text{You're probably realizing from these examples that \# is the commenting character in Python. Everything from the \# on is ignored on the same line.}\]
The file starts out importing csv since that’s necessary for CSVfile to work. A general function is defined number that knows how to convert strings to numbers. Since some values are “na” (not applicable or not available) and others are field names, a default value is created that gets returned whenever a non-number is found.

```python
class CSVfile:
    def __init__(self, filename):
        self.filename = filename
        self.rewind();

    def rewind(self):
        self.fp = open(self.filename, "rb")
        headerReader = csv.reader(self.fp)
        self.headers = headerReader.next()
        self.dataReader = csv.DictReader(self.fp, fieldnames=self.headers)

    def next(self):
        return self.dataReader.next()

    def getRows(self, fieldName, value):
        ret = []
        for row in self.dataReader:
            if row[fieldName] == value:
                ret.append(row)
        return ret
```

The next part of CSVfile is definition of the class CSVfile and the initialization method, __init__. This is the method that gets called when we first create a CSVfile, like `popdata = csvfile.CSVfile("pops-2000.csv")`. You’ll notice that all methods in Python start out with the argument of self. That’s how Python methods get access to the instance of the class that is being accessed with this method call. Even if your method takes no arguments when you use it, you must still include self as an argument when you define it.

The __init__ method simply saves the input filename as a field (instance variable) within the instance, self.filename. Then the rewind method is called. In that method, we open the file (as “rb” which means that it’s readable and binary—the csv module likes to be able to get at the binary representation, not just the text), read out the field/header names, then create the DictReader. Notice that we save the headers in an instance variable so that we can access them later.

```python
def next(self):
    return self.dataReader.next()
```

This method allows us to get at individual dictionary rows, if we want, through the next method.

```python
def getRows(self, fieldName, value):
    ret = []
    for row in self.dataReader:
        if row[fieldName] == value:
            ret.append(row)
    return ret
```

Here’s how the getRows method works. It takes a fieldname (like ‘country’) and a value (like ‘Australia’) as inputs (and self, as always), then returns a list of all the dictionaries where that fieldname matches that value. In the simple population dataset we’re using now, that’s simple, but one could
also (for example) have more data and pull out all rows for a given year with this method. We create the list that we will be returning with the line
ret = []. The square brackets ([]) define a list, and here, an empty list (one with nothing in it to start).

The for loop in Python is very powerful. You can iterate through all the rows in the dataset with for row in self.dataReader—the variable row will take on the value of each row in the data. You can use a for loop to iterate through just about anything in Python. Here’s an example that iterates through a list to print each value in the list.

```python
>>> for letter in ['a','b','c']:
...     print letter
...     a
...     b
...     c
```

In getRows, we iterate through the list, and everywhere that the row dictionary has the fieldname hold the specified value, we append that row to our return value list, ret. After iterating through everything, we return the return list.

How might you use this elsewhere? You can use for loops to iterate all kinds of data, including data that you gathered from different analyses. You could do a search for all the rows with the year 1990, then all the rows with the year 2000, and then iterate through each returned list to get the difference in populations.

```python
def getColumn(self, filename):
    ret = []
    for row in self.dataReader:
        ret.append(row.get(filename))
    return map(number, ret)
```

The getColumn method is very similar to getRows. Here, we gather every value of the specified filename (like ‘POP’) and put it in the list. But before we return the list, we map the function number (from the top of csvfile) on to all the values. That’s what turns the list of strings (which is what is stored in the CSVfile) to a list of numbers.
An important part of data analysis is visualizing your data. This chapter describes how to do that.

2.1 Your Basic Plot: Slicing Up The World’s Population

To do any plotting, we need to access Matplotlib with `from pylab import *`. The basic command to plot is, not surprisingly, `plot`. The function `plot` can take a variety of different kinds of inputs. The most basic is just a sequence—an array or list of all numeric values.

We saw in the previous chapter how to create an array of populations in the year 2000 for 168 countries. We knew that the first element in the list was from the field name "POP", so we can skip that. It turns out that Python has some powerful tools for grabbing parts of a sequence. It’s called slicing.

For any sequence, you can provide indices for the sequence as square brackets with a colon within them. The first value indicates where to start from and the second value indicates the index to stop before. That’s important—the second value is not included in the result. The first index in Python is zero—the first value in any Python sequence is numbered zero. If the first value is missing, it’s considered to be 0. If the second value is missing, it’s considered to be the length of the list.

```
>>> a=[1,2,3,4,5]
>>> a[0]
1
>>> a[1:]  # From index 1 (second element) to the end
[2, 3, 4, 5]
>>> a[:3]  # From 0 to 2 (not including index 3)
[1, 2, 3]
>>> a[1:3]
[2, 3]
>>> len(a)
5
```

Slicing will work for any sequence, including strings.
>>> alpha="abcdefghijklmnopqrstuvwxyz"
>>> alpha[0]
'a'
>>> alpha[2:]
'cdefghijklmnopqrstuvwxyz'
>>> alpha[14:18]
'opqr'
>>> len(alpha)
26

All of this is to explain that the list of populations skipping the first value is pops[1:]. So, simply put, plotting the populations is plot(pops[1:].)

Once you make a plot, you don’t see it. You have a choice what to do.

- You can show() the plot (Figure ??). The plot window is really nice and allows you to save it, pan around it, zoom into it.

- You can savefig.

The function savefig is really pretty amazing. You simply give it a filename as input, and it tries to save the file in the format specified by the filename. If your filename ends in .eps, it will try to save the plot as Encapsulated Postscript (EPS) (Figure ??). If your filename ends in .png, it will try to save the plot in the portable graphics format PNG. If your filename ends in .jpg, it will try to save the plot in JPEG format. (Both PNG and JPEG can be inserted into Microsoft Word documents.) Whether or not it can depends on details of your specific computer (e.g., operating system, whether you have the newest version of all the software, etc.). I can’t save in JPEG on my Windows computer with Enthought Python, so I got the IOError below. (A traceback shows us all the methods or functions currently executing, and at what line, when the error occurs. This error is on purpose it was raised. In other cases, a traceback can help you debug.)

>>> plot(pops[1:]);
[<matplotlib.lines.Line2D instance at 0x01ABFE90>]
>>> savefig("populations-unsorted.eps")
>>> savefig("populations-unsorted.jpg")
Traceback (most recent call last):
 File "<stdin>", line 1, in ??
 File "C:\Enthought\lib\site-packages\matplotlib\pylab.py", line 839, in savefig
 return fig.savefig(* args, **kwargs)
 File "C:\Enthought\lib\site-packages\matplotlib\figure.py", line 658, in savefig
 self.canvas.print_figure(*args, **kwargs)
 File "C:\Enthought\lib\site-packages\matplotlib\backends\backend_wxagg.py", line 2139, in print_figure
 self.figure.canvas.print_figure(* args, **kwargs)
 File "C:\Enthought\lib\site-packages\matplotlib\backends\backend_wxagg.py", line 1672, in print_figure
 canvas.print_figure(* args, **kwargs)
 File "C:\Enthought\lib\site-packages\matplotlib\backends\backend_wxagg.py", line 1681, in print_figure
 self.print_wxcanvas(* args, **kwargs)
 File "C:\Enthought\lib\site-packages\matplotlib\backends\backend_wxagg.py", line 1322, in print_wxcanvas
 wx.printer(printer).Print(* args, **kwargs)
 File "C:\Enthought\lib\site-packages\wx\printers.py", line 43, in Print
 self.GetPrinter().Print(* args, **kwargs)
 File "C:\Enthought\lib\site-packages\wx\printers.py", line 71, in Print
 self.Printer(printer).Print(* args, **kwargs)
 File "C:\Enthought\lib\site-packages\wx\printers.py", line 93, in __init__
 _Py MATLAB GraphicsPython Help
 Help: No printer provided.
 Help: Please provide a printer.
 Help: Please provide a printer.
2.1. YOUR BASIC PLOT: SLICING UP THE WORLD’S POPULATION

This is a particularly unimpressive graph. The y-axis is obvious—that’s populations in thousands. But what’s the x-axis? It’s countries, in alphabetical order by first name. If you don’t provide an x-axis (which you can do, and we’ll do it in just a few minutes), the x-axis is assumed to be just the index values of the sequence: 0, 1, 2, and so on.

So let’s make the chart a little more interesting. Python knows how to sort any sequence. Let’s put the population into sorted order. Our new sequence will start at \(-1\) (see below) – we know that unavailable or label data maps to \(-1\), so we can expect to see at least one of those. The max value is pretty big, 1258821.0314. We then generate the plot, save it, and show it.

```python
>>> spops = sort(pops)
>>> spops[0]
-1.0
>>> spops[len(spops)-1]
1258821.0314
```

Figure 2.1: Our first graph–countries’ populations, unsorted
Before you look at the plot, think about it. What do you expect to see? How do you think that populations distribute around the world? Consider these three possibilities.

Option (a) says that all populations are equally likely in the world, so if you plot them from smallest to largest, it’s a gradual slope from left to right. Option (b) says that all populations are roughly the same, so the slope of the line is essentially flat. Option (c) says that all population levels occur, but they grow faster than the gradual slope in (a) would suggest—the biggest countries are much bigger than the smaller countries.

Now take a look at the graph, Figure 2.2. None of the three, is it? What this graph seems to be saying is that most of the populations are roughly the same and the curve doesn’t really start going up until the very end, where it shoots up really fast. A few countries are just enormous, while most are (comparatively speaking) about the same size.

Is that really true? Is that really what’s going on in this data? One of the nice things about Python’s slicing is that you can literally take slices through the data with it. What do the first ten value look like? All −1. “Aha!” you may think. “That ‘flatness’ is just an artifact of populations that we didn’t have – NA or Not Available!” Let’s take another slice about
half way through (there are 168 values here) – by index 50, the values are not \(-1\). And by the end, they are huge.

```python
>>> spops[0:10]
[-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.]
>>> spops[50:80]
[ 1199. , 1230. , 1301. , 1303. , 1369. , 1988. , 2031. ,
  2035. , 2372. , 2633. , 2856. , 3018. , 3337. , 3411. , 3695. , 3786.9 ,
  3803. , 3811. , 3831. , 4018. , 4282. , 4328. , 4380. , 4491. ,
  4527. , 4886.81, 4915. , 5024. , 5031. , 5071. ,]
>>> len(spops)
168
>>> spops[160:168]
[ 131050. , 138080. , 145555.008 , 170406. , 210420.992 ,
  275423. , 1015923.008 , 1258821.0314,]
```

Graphs are obviously darn useful here, but plots alone don’t tell us everything. We need to look at some of the numbers. Do we need to look at all the numbers we did above? And did we look at the right values above – what if the values all the way from 0 to 49 are \(-1\)? Would that change your opinion about the graph? In this class, we’re going to learn about a variety of techniques for describing values, to get a sense of what the data are doing in a set and how they relate to other data. Graphing is really useful, but it’s only one way to look at the data.

2.2 Options on the Plot

The `plot` method has lots of ways that it can be used. One is that you can pass in two sequences as arguments— one containing the Y values, and the other X axis values (Figure 2.3). Here, we use `arange` to generate a bunch of floating point numbers (not integers but numbers with a decimal place) between 0 and 3, spaced out 0.05 apart. We then generate another array, `s`, by using a special version of `sin` that iterates over the array `t` and generates a new array element for `s`. There’s a loop there, but it’s hidden inside of `sin`. It’s called a universal function (or `ufunc`), and they’re documented in the [Numeric Python documentation](https://docs.python.org/3/library/numpy.html#numpy.ufunc).

```python
>>> t = arange(0.0, 3.0, 0.05)
>>> t[0:5]
[ 0. , 0.05, 0.1 , 0.15, 0.2 ,]
>>> s = sin(2*pi*t)
>>> s[0:5]
[ 0. , 0.30901699, 0.58778525, 0.80901699, 0.95105652,]
>>> plot(t,s)
```
CHAPTER 2. PLOTTING

>>> savefig("C:/temp/sinplot.eps")
>>> show()

Figure 2.3: A graph generated with X and Y values

Generating plots from files

You don’t really want to type in all those commands at the command prompt each time you want a plot. Instead, it’s easier to put these commands in a file like this (see also Program Program Example #2):

```python
from pylab import *
import csvfile
popdata = csvfile.CSVfile("pops−2000.csv")
pops = popdata.getColumn("POP")
spops=sort(pops)

plot(spops[1:], marker="o", color="r")
title('Populations of countries in the year 2000')
xlabel('Countries in increasing order of population')
ylabel('Population in millions')
grid(True)
show()
```

This “file” (“program”?) is doing the necessary import commands, setting up the data, then generating the plot (Figure 2.4). You can use just about any text editor for creating this file—Word might work, but Notepad would be better. I like to use WinEdit which is a really nice editor for text on Windows. There are also editors like emacs and vi that you can use. Just make sure that the filename always ends in ‘.py’ to stand for Python.

You’ll notice that we’re also doing a lot more tweaking to this graph.
2.3. THE PLOT THICKENS: COMBINING PLOTS TO DETERMINE US AND UK GROWTH RATES

- We can label the X-axis and Y-axis with xlabel and ylabel.
- We can title the whole graph with title.
- We can define a marker for the line. Markers can be '+', ',', 'o', ',', 's', ',', 'v', ',', 'x', ',', '|' or ','.
- We can define a color for the line. Here we're using 'r' for red. Colors can be:

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>blue</td>
</tr>
<tr>
<td>g</td>
<td>green</td>
</tr>
<tr>
<td>r</td>
<td>red</td>
</tr>
<tr>
<td>c</td>
<td>cyan</td>
</tr>
<tr>
<td>m</td>
<td>magenta</td>
</tr>
<tr>
<td>y</td>
<td>yellow</td>
</tr>
<tr>
<td>k</td>
<td>black (go figure)</td>
</tr>
<tr>
<td>w</td>
<td>white</td>
</tr>
<tr>
<td>(0.25,0.35,0.5)</td>
<td>An RGB triplet (tuple) where the scale is 0..1</td>
</tr>
<tr>
<td>red</td>
<td>Any HTML color name</td>
</tr>
</tbody>
</table>

- Not used here, we can also specify a linestyle: ':', ',', '-', or '–'.
- We can use the same color parameters to specify a markeredgecolor and markerfacecolor and even markersize (in points) if we wanted.

Now, how to run this code. In IPython, it’s easy. There are commands to cd to the right directory (where you put the file) and then run the file.

In [2]: cd C:/Documents and Settings/Mark Guzdial/My Documents/Work/CompFreak

In [3]: run fancierplot.py

In other forms of Python, you need to import the file. If you change the file (to fix a bug, to generate a slightly different plot), you can reload the file to re-execute it.

Python 2.3.5 - Enthought Edition 0.9.6 (#62, May 11 2005, 20:02:58)
[MSC v.1200 32 bit (Intel)] on win32 Type "help", "copyright", "credits" or "license" for more information.

>>> import fancierplot

2.3 The Plot Thickens: Combining Plots to Determine US and UK Growth Rates

In work in Freakonomics, you will often want to compare multiple plots at once. The easiest way to do this is by putting both lines that you care about on the same plot.
CHAPTER 2. PLOTTING

Populations of countries in the year 2000

Figure 2.4: Making a fancier plot

I generated a dataset with all the populations (and savings rates, and other fields) for the US and the UK from 1990 to 2000. Here’s a segment of what the file looks like:

```
"country","country isocode","year","POP","XRAT","csave","rgdptt"
"United Kingdom","GBR","1999","59501","0.6181","17.409775303","22175.425041"
"United Kingdom","GBR","2000","59756","0.6609","17.766614978","22848.837615"
"United States","USA","1990","249981","1","18.785790541","26365.46609"
"United States","USA","1991","252677","1","18.4248996","25893.640342"
```

We can write code to withdraw the relevant data from this file, and then plot it.

```
from pylab import *
import csvfile

natdata = csvfile.CSVfile("us-uk-1990-2000.csv")
usdata = natdata.getRows('country', 'United States')
ukdata = natdata.getRows('country', 'United Kingdom')

# Get the populations
uspops = []
for row in usdata:
    uspops.append(csvfile.number(row['POP']))
ukpops = []
for row in ukdata:
    ukpops.append(csvfile.number(row['POP']))

years=range(1990,2001)
p = "US", uspops, len(uspops)
p = "UK", ukpops, len(ukpops)
```
2.3. \textbf{THE PLOT THICKENS: COMBINING PLOTS TO DETERMINE US AND UK GROWTH RATES}

\begin{verbatim}
print "Years", years, len(years)

plot(years, uspops, 'r--o', years, ukpops, 'b-x')
legend(('US Population', 'UK Population'), loc='center right')
title('Populations of US and UK 1990--2000')
xlabel('Years')
ylabel('Population in millions')
grid(True)
savefig("us_uk_pop_plot.eps")
show()
\end{verbatim}

\textbf{How it works:} We open the datafile, grab the US data, rewind it, then grab the UK data. We make an assumption that the data is still in year order – that could have been a bad assumption, and there are other ways to grab the data so that we don’t have to assume that. The data in usdata and ukdata are now in row/dictionary form. To get just the population ('POP') data, we create lists with those values, converted to numbers. (Notice that I check my results with \texttt{print} statements–it’s okay to have them in your file, and they'll work.)

We then plot with X (year), and Y (population) data, in the same plot command (Figure ??). You’ll note that we can specify the line color, line style, and marker in a string next to the relevant plot.

From this plot, it looks like the US population has been rising steeply, while the UK population has been essentially flat. That’s what it \textit{looks like}, but we’ll see later that there are other ways to look at it.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{us_uk_pop_plot.png}
\caption{Populations of US and UK 1990-2000}
\end{figure}

Obviously, the legend function generates a legend. The legend function \texttt{doesn’t have} to have a \texttt{loc} (location) parameter. I found that the default (so-called 'best') location is the upper-right, which covered over the US
population curve. So I changed the location. How did I figure out how to change the legend location? It’s not in the Matplotlib documentation (that I could find). Turns out that there’s even more documentation within Python using the help function.

>>> help(legend)
Help on function legend in module matplotlib.pylab:

legend(*args, **kwargs)
LEGEN(*args, **kwargs)
Place a legend on the current axes at location loc. Labels are a sequence of strings and loc can be a string or an integer specifying the legend location
USAGE:
Make a legend with existing lines
>>> legend()
legend by itself will try and build a legend using the label property of the lines/patches/collections. You can set the label of a line by doing plot(x, y, label='my data') or line.set_label('my data'). If label is set to '_nolegend_', the item will not be shown in legend.
automatically generate the legend from labels
legend(('label1', 'label2', 'label3'))
Make a legend for a list of lines and labels
legend((line1, line2, line3), ('label1', 'label2', 'label3'))
Make a legend at a given location, using a location argument
legend(LABELS, LOC) or
legend(LINES, LABELS, LOC)
legend(('label1', 'label2', 'label3'), loc='upper left')
legend((line1, line2, line3), ('label1', 'label2', 'label3'), loc='upper left')
The location codes are
'best' : 0,
'upper right' : 1, (default)
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10,
If none of these are suitable, loc can be a 2-tuple giving x,y in axes coords, ie,
loc = 0, 1 is left top
loc = 0.5, 0.5 is center, center
2.3. THE PLOT THICKENS: COMBINING PLOTS TO DETERMINE US AND UK GROWTH RATES

As Two Separate Plots

The problem with the legend points out that, sometimes, it doesn’t work out well to have the two (or more) lines in the same graph. If the X axes are the same, you can do vertical plots for the same effect. The graphs can be compared, but without having to stick to the same Y axis.

The below program does that using the subplot function (Figure ??). The subplot specifies how many rows and columns of plots you want (first two arguments) and then which one you’re specifying now. You’ll also see in this program that we add an additional loop to make sure that we’re calling up the right year in the right order. This will be important when we try to join data later.

```python
from pylab import *
import csvfile

natdata = csvfile.CSVfile("us-uk-1990-2000.csv")
usdata = natdata.getRows('country','United States')
natdata.rewind()
ukdata = natdata.getRows('country','United Kingdom')

# Get the populations
# This time, making SURE that they're in year-order
years=range(1990,2001)
uspops = []
for y in years:
    for row in usdata:
        if row['year']==str(y): #Items in rows are strings
            uspops.append(csvfile.number(row['POP']))
            break #Leave the row loop

ukpops = []
for y in years:
    for row in ukdata:
        if row['year']==str(y):
            ukpops.append(csvfile.number(row['POP']))
            break

# Top subplot: 2 rows, 1 column, subplot #1
subplot(2,1,1)
plot(years,uspops,'r--o')
xlabel('Years')
ylabel('Population in millions')
grid(True)

subplot(2,1,2)
plot(years,ukpops,'b-x')
title('Population UK 1990–2000')
```

1What would happen if you changed the rows and columns between subplot calls? Dunno.
CHAPTER 2. PLOTTING

```python
xlabel('Years')
ylabel('Population in millions')
grid(True)

savefig("us uk pop plot2.epb")
show()
```

![Figure 2.5: US and UK Populations, as two subplots](image)

Notice something important about this double plot. Sure looks like the slope of each line is about the same! There are ways to check that assumption later, but it looks like both the US and UK plot have been increasing at very similar rates, but we only see that if we shift the scales appropriately to see how each is increasing.
3 Descriptive Statistics

The way in which we usually describe sets of numbers is with descriptive statistics—numbers that reflect the overall picture, range, or distribution of the set.

3.1 Average or mean: Petroleum Tax Prices

The average or mean is simply the sum of the values divided by the number of values.

Let’s compute the value of a stock over a given year. From Yahoo Stocks, we can get the monthly value of a stock over some period of time. The below is some of the values for British Petroleum (BP).

We can access this data just as we have any other CSV data.

In [11]: import csvfile

In [12]: bpdata=csvfile.CSVfile("BritishPetroleum-BP-table.csv")

In [13]: bpdata.next() Out[13]: {'Adj. Close * ': '67.48', 'Close': '67.48', 'Date': '1-Jun-06', 'High': '72.38', 'Low': '66.20', 'Open': '69.61', 'Volume': '4938385'}

In [14]: bpdata.next()["Date"] Out[14]: '1-May-06'

There are built-in functions to sum across a sequence, and to get the length of a sequence (the number of values there). We can use these to
define an average function. Notice that we multiple by 1.0 to force Python to do floating point arithmetic, rather than simple integer arithmetic.

```python
In [15]: a=[1,2,3,4]
In [16]: sum(a)
Out[16]: 10
In [17]: len(a)
Out[17]: 4
In [18]: sum(a)/len(a)
Out[18]: 2
In [19]: (sum(a)*1.0)/len(a)
Out[19]: 2.5
```

```python
from pylab import *
import csvfile
def average(sequence):
    return (1.0*sum(sequence))/len(sequence)
bpdata = csvfile.CSVfile("BritishPetroleum–BP–table.csv")
# Let's get the 1990 year.
closes = []
for row in bpdata.dataReader:
    if row[ 'Date' ].endswith( '90' ):
        closes.append(csvfile.number(row[ 'Close' ]))
# Return the average
print "Closing values", closes
print "Average: ", average(closes)
```

How it works: We import pylab and csvfile, as we have in the past. We define a function average which is fine to do in-line. We then open up the file and do a search for all those dates that end in '90' (in order to get the average of the 1990 monthly closing dates). Notice that our loop executes over the dataReader. That's how we did it in csvfile.py.

```bash
In [26]: run bpAvg1990.py
Closing values [76.87, 80.25, 77.5, 77.25, 82.12, 74.5, 66.5, 66.62, 60.13, 64.75, 68.5, 68.75]
Average: 71.9783333333
```
3.2 Standard Deviation

Standard deviation is the amount of spread in the values in the data set. If all the values in the data set are exactly the same, then they’re all equal to the mean value, and the standard deviation is zero. The higher the standard deviation, the further values differ from the mean.

The standard deviation is the square root of the variance. It’s the average of the squared differences from the mean. Here’s the basic process for figuring out the standard deviation.

1. First, compute the mean.
2. Figure out the difference between each value and the mean, e.g., $x_i - mean$ for all positions i in the data sequence. Then square that distance. The square removes the possibility of a negative value, since you don’t know which is bigger, x_i or the mean.
3. Sum up all these squared differences, then divide by the number of numbers in the sequence. This is called the average of the squared differences, or the variance.
4. Finally, take the square root of the whole thing. The idea is to get close to the average of the differences, with the squared-differences and square root in there to deal with positive and negative values.

Let’s see a program that implements the standard deviation algorithm. In this program, we gather data from both British Petroleum (BP), but also Exxon-Mobil (XOM on Yahoo).

```python
from pylab import *
import csvfile

def average(sequence):
    return (1.0*sum(sequence))/len(sequence)

def std_dev(sequence):
    ave = average(sequence)
    # Compute the mean squared difference
    diffs = 1.0
    for num in sequence:
        diffs = diffs + pow((ave-num),2)
    # Compute the variance
    variance = diffs/len(sequence)
    # Return the square root of the variance
    return pow(variance,0.5)

bpdata = csvfile.CSVfile("BritishPetroleum-BP-table.csv")
```
Let's get the 1990 year.
closes = []
for row in bpdata.dataReader:
 if row['Date'].endswith('90 '):
 closes.append(csvfile.number(row['Close']))

Return the average
print "*** BP ***"
print "Closing values", closes
print "Average:", average(closes)
print "Standard Deviation:", std_dev(closes)

amdata = csvfile.CSVfile("Exxon-Mobil-XOM-table.csv")

Let's get the 1990 year.
closes = []
for row in amdata.dataReader:
 if row['Date'].endswith('90 '):
 closes.append(csvfile.number(row['Close']))

Return the average
print "*** Exxon/Mobil ***"
print "Closing values", closes
print "Average:", average(closes)
print "Standard Deviation:", std_dev(closes)

The function pow takes the power of one number to another number. It works for squaring (pow(something,2)) and for getting square roots (pow(something,0.5)). And here's the run of it.

In [30]: run bpStdDev1990.py
*** BP ***
Closing values [76.870000000000005, 80.25, 77.5, 77.25, 82.120000000000005, 66.5, 66.620000000000005, 60.130000000000003, 64.75, 68.5, 68.75]
Average: 71.9733333333
Standard Deviation: 6.67650877355

*** Exxon/Mobil ***
Closing values [51.75, 50.630000000000003, 49.0, 49.0, 50.0, 51.880000000000003, 47.880000000000003, 48.0, 45.25, 46.25, 47.0, 47.0]
Average: 48.6366666667
Standard Deviation: 2.05769018292

Okay, so on average, BP stock had a higher close in 1990 than Exxon-Mobil, but BP also had a higher standard deviation. It varied more over that year than Exxon did. Does that matter? Is it really different? And what does "really different" mean, anyway?
3.3. Histogram

Another way of getting a picture of what’s happening with a data set is to use a histogram. A histogram tells you the number of occurrences of values in a certain range. “Hold on!” you say. “I don’t see that in the Matplotlib documentation!” Yet again, you need to use help.

In [9]: from pylab import *
ln [10]: help(hist)
Help on function hist in module matplotlib.pylab:

hist(*args, **kwargs)
 HIST(x, bins=10, normed=0, bottom=0, orientation='vertical', **kwargs)
 Compute the histogram of x. bins is either an integer number of
 bins or a sequence giving the bins. x are the data to be binned.
 The return values is (n, bins, patches)
 If normed is true, the first element of the return tuple will
 be the counts normalized to form a probability density, ie,
 n/(len(x)*dbin)
 orientation = 'horizontal' | 'vertical'. If horizontal, barh
 will be used and the "bottom" kwarg will be the left.
 width: the width of the bars. If None, automatically compute
 the width.
 kwargs are used to update the properties of the
 hist bars

 Addition kwargs: hold = [True|False] overrides default hold state

Here’s an example that generates a histogram for each of the BP and Amoco-Mobil stock.

from pylab import * import csvfile

def average(sequence):
 return (1.0*sum(sequence))/len(sequence)

def std_dev(sequence):
 ave = average(sequence)
 # Compute the mean squared difference
 diffs = 1.0
 for num in sequence:
 diffs = diffs + pow((ave-num),2)
 # Compute the variance
 variance = diffs/len(sequence)
 # Return the square root of the variance
 return pow(variance,0.5)
CHAPTER 3. DESCRIPTIVE STATISTICS

```python
bpdata = csvfile.CSVfile("BritishPetroleum-BP-table.csv")

# Let's get the 1990 year. closes = [] for row in bpdata.dataReader:
    if row[ 'Date' ].endswith( '90' ):
        closes.append(csvfile.number(row[ 'Close' ]))

subplot(2,1,1) title("BP stock in 1990—Histogram") hist(closes)

amdata = csvfile.CSVfile("Exxon-Mobile-XOM-table.csv")

# Let's get the 1990 year. closes = [] for row in amdata.dataReader:
    if row[ 'Date' ].endswith( '90' ):
        closes.append(csvfile.number(row[ 'Close' ]))

subplot(2,1,2) title("Amoco/Mobil stock in 1990—Histogram") hist(closes)

savefig("BP_AM_hist.eps") show()

The result is Figure 3.1. This helps some, like showing that BP basically had two common prices during this time, while Exxon-Mobil is more disperse. We call that the shape of the distribution.

So, do you think BP and Exxon-Mobil roughly track one another? That is, do they move up or down in the same ways? If they do, one would presume that the impacts on their prices have more to do with external factors (e.g., peace in the Middle East) than with anything in the companies themselves or in the UK or US, respectively. How would we find out? See next chapter...
```

Figure 3.1: BP and Exxon-Mobil stock prices in 1990, as histograms
4 Correlation

How do we compare two sequences of values? How do we figure out if BP and Exxon-Mobile change in roughly the same ways at roughly the same times (suggesting that factors external to either company are acting upon both at the same time)? How do we figure out if the UK and US populations grow and shrink at about the same rate (suggesting that whatever factors influence the size of populations are impacting both countries at the same time in the same way)? One way of doing that is with a correlation. A correlation is a number that describes how related two data sets are.

4.1 Computing correlation: Is it the company, or war in the Middle East?

Let’s call one data set x and the other data set y. Each data set should have the same number of elements, call it n. The correlation number is called r. Here’s the formula for r.

$$r = \frac{(n \sum_{i=0}^{n} x_i y_i) - (\sum_{i=0}^{n} x_i)(\sum_{i=0}^{n} y_i)}{\sqrt{(n \sum_{i=0}^{n} x_i^2 - (\sum_{i=0}^{n} x_i)^2)(n \sum_{i=0}^{n} y_i^2 - (\sum_{i=0}^{n} y_i)^2)}}$$

Let’s talk our way through that mess.

- In the numerator, $(n \sum_{i=0}^{n} x_i y_i)$ is the sum of each pair of x_i and y_i multiplied together. We subtract from that the product of the sum of all the x values ($\sum_{i=0}^{n} x_i$) and the sum of all the y values ($\sum_{i=0}^{n} y_i$). So, the numerator is this sing-song term: the sum of the products of the scores less the product of the sums of the scores.

- In the denominator, it’s the square root of a product. The first term in the product is n times the sum of all x values squared minus the square of the sum of all x values ($n \sum_{i=0}^{n} x_i^2 - (\sum_{i=0}^{n} x_i)^2$). The second term in the product is the y version of that ($n \sum_{i=0}^{n} y_i^2 - (\sum_{i=0}^{n} y_i)^2$).

While that’s messy as one might imagine, it turns out to be pretty straightforward to convert that into Python code.

```python
def correlation(x, y):
    n = len(x)
```
if n != len(y):
 print "Uh-oh! x and y must be paired values!"
 return 0.0
Compute the numerator
prod_pairs = 0
for i in range(0,n):
 prod_pairs = prod_pairs + (x[i]*y[i])
numerator = n*prod_pairs - (sum(x)*sum(y))
Compute the denominator
x_square = 0
for i in range(0,n):
 x_square = x_square + pow(x[i],2)
y_square = 0
for i in range(0,n):
 y_square = y_square + pow(y[i],2)
denom_term1 = ((n*x_square) - pow(sum(x),2))
denom_term2 = ((n*y_square) - pow(sum(y),2))
denominator = pow((denom_term1*denom_term2),0.5)
return numerator/denominator

How it works: Computing n is easy—it's the length. We want to make sure that the two lengths are equal, else the values couldn't possibly be paired. The sum of the product of the pairs is just what it sounds like: for all index values i, prod_pairs = prod_pairs + (x[i]*y[i]). The numerator is then numerator = n*prod_pairs - (sum(x)*sum(y)). The sum of the x's squared is for all index values i, x_square = x_square + pow(x[i],2). The y_square is computed in the same way. The denominator \[
\sqrt{n \sum_{i=0}^{n} x_i^2 - (\sum_{i=0}^{n} x_i)^2)(n \sum_{i=0}^{n} y_i^2 - (\sum_{i=0}^{n} y_i)^2)}
\] is then computed with the code:

denom_term1 = ((n*x_square) - pow(sum(x),2))
denom_term2 = ((n*y_square) - pow(sum(y),2))
denominator = pow((denom_term1*denom_term2),0.5)

The correlation is then numerator/denominator.

Example: Correlating British vs. American Petroleum Stock Prices

Let's look again at our BP vs. Exxon-Mobil petroleum stock prices in 1990. Are these two data sets highly correlated?

from pylab import *
import csvfile
def average(sequence):
 return (1.0*sum(sequence))/len(sequence)

def std_dev(sequence):
 ave = average(sequence)
4.1. COMPUTING CORRELATION: IS IT THE COMPANY, OR WAR IN THE MIDDLE EAST?

Compute the mean squared difference
diffs = 1.0
for num in sequence:
 diffs = diffs + pow((ave-num),2)
Compute the variance
variance = diffs/len(sequence)
Return the square root of the variance
return pow(variance,0.5)

def correlation(x,y):
 n = len(x)
 if n != len(y):
 print("Uh-oh! x and y must be paired values!")
 return 0.0
 # Compute the numerator
 prod_pairs = 0
 for i in range(0,n):
 prod_pairs = prod_pairs + (x[i]+y[i])
 numerator = n*prod_pairs - (sum(x)*sum(y))
 # Compute the denominator
 x_square = 0
 for i in range(0,n):
 x_square = x_square + pow(x[i],2)
y_square = 0
 for i in range(0,n):
 y_square = y_square + pow(y[i],2)
 denom_term1 = ((n*x_square)-pow(sum(x),2))
 denom_term2 = ((n*y_square)-pow(sum(y),2))
 denominator = pow((denom_term1+denom_term2),0.5)
 return numerator/denominator

bpdata = csvfile.CSVfile("BritishPetroleum-BP-table.csv")

#Let's get the 1990 year.
bpcloses = []
for row in bpdata.dataReader:
 if row["Date"].endswith('90'):
 bpcloses.append(csvfile.number(row["Close"]))

amdata = csvfile.CSVfile("Exxon-Mobile-XOM-table.csv")

#Let's get the 1990 year.
amcloses = []
for row in amdata.dataReader:
 if row["Date"].endswith('90'):
 amcloses.append(csvfile.number(row["Close"]))
print "BP closing values: ", bpcloses
print "average", average(bpcloses)
print "number", len(bpcloses)
print "standard deviation", std_dev(bpcloses)

print "Exxon–Mobil (American) closing values:", amcloses
print "average", average(amcloses)
print "number", len(amcloses)
print "standard deviation", std_dev(amcloses)

print "Correlation is ", correlation(bpcloses, amcloses)

And here’s what the run looks like:

In [9]: run bpAmCorrel1990.py
BP closing values: [76.870000000000005, 80.25, 77.25, 77.25, 82.120000000000005, 74.5, 66.5, 66.620000000000005, 60.130000000000003, 68.5, 68.75]
average 71.9783333333
number 12
standard deviation 6.67530877355
Exxon-Mobil (American) closing values: [51.75, 50.630000000000003, 49.0, 49.0, 50.0, 51.880000000000003, 47.880000000000003, 48.0, 46.25, 46.25, 47.0, 47.0]
average 48.6366666667
number 12
standard deviation 2.05769018292
Correlation is 0.819128769403

This correlation r is called the Pearson Product Moment Correlation. It has values between -1.0 and 1.0. A negative value suggests a negative correlation—when x goes up, y goes down. A positive value suggests a positive correlation—both values go up at about the same time. A value of 0.82 is pretty darn close to 1.0, so that suggests a strong positive relation.

But is it significant?

But maybe 1990 was a bad year. Maybe if we had looked at 1991 or 1989, we wouldn’t have seen any correlation at all, or at least, a much weaker one. What we want to do is consider the probability that what we observed was just luck. We call this a significance chance. Basically, the more values that you have and the stronger the correlation, the more confidence that you can have that the result is significant.

The correlation r and the number of pairs are only two of the three variables that you need to determine significance. The last value is the significance level, also called the alpha value. How sure do you want to be? A common alpha value is 0.05. That means that only 5 of 100 experiments with data samples from these variables would be wrong. If this were medical research, we might want an alpha value of 0.01 or even 0.10. (In Education research, we can sometimes get away with 0.10.)

There is another factor that we’re not going to talk about much here, and that’s whether you’re doing a one-tailed or two-tailed test. The first means “Are we only testing for one value being greater than the other?”
where the second one means “Are we testing for any difference between the two?” We’ll go with two-tailed for now.

The number of pairs is called the degrees of freedom\(^1\). The degrees of freedom for a correlation is \(n - 2\).

So, for our data set, we have 10 degrees of freedom (because we have 12 pairs and \(12 - 2\) is 10), and we’ll use an alpha value of 0.05. Now we need an ever-present correlation table. There are a bunch linked to the class Swiki. The one I’m using is at http://www.gifted.uconn.edu/siegle/research/Correlation/corrchrt.htm. The value at \(df\) 10 and alpha value 0.05 is 0.576. That means that if our \(r\) is less than \(-0.576\) it’s a significant negative correlation, and if it’s greater than 0.576, it’s a significant positive correlation.

Since our \(r\) value is 0.82, we have a significant relationship. Our inference, then, is that whatever factors influenced the stock price of BP and Exxon-Mobil in 1990, they were mostly the same factors, since the stock prices are highly correlated. This doesn’t mean that there is a causal relationship—just because BP went down, Exxon went down, nor vice-versa. This doesn’t say anything about causation at all. But it does say that there is a relationship. How would you find out what factors are leading to that relationship? Hmm, good question—one for a future chapter.

4.2 But do we believe it?

I don’t know about you, but I find the correlation computation to be a bit of mumbo-jumbo—statistical voodoo. How do we know that it’s really telling us anything? Let’s do some experiments to find out.

I want to get access to our correlation function, so I put it in a file correlation.py.

```python
from pylab import *

def correlation(x,y):
    n = len(x)
    if n != len(y):
        print "Uh-oh! x and y must be paired values!"
        return 0.0
    # Compute the numerator
    prod_pairs = 0
    for i in range(0,n):
        prod_pairs = prod_pairs + (x[i]*y[i])
    numerator = n*prod_pairs - (sum(x)*sum(y))
    # Compute the denominator
    x_square = 0
    for i in range(0,n):
        x_square = x_square + pow(x[i],2)
    y_square = 0
```

\(^1\)These statisticians have names for everything!
for i in range(0,n):
y_square = y_square + pow(y[i],2)
denom_term1 = ((n*x_square)−pow(sum(x),2))
denom_term2 = ((n*y_square)−pow(sum(y),2))
denominator = pow((denom_term1+denom_term2),0.5)
return numerator/denominator

That way, I can just import it and use it. First test: Are two identical sets of numbers “correlated”?

In [10]: from correlation import *
In [11]: correlation([1,2,3,4,5,6,7,8,9,10],[1,2,3,4,5,6,7,8,9,10])
Out[11]: 1.0

That’s good. I would expect two identical sets of numbers to be correlated as strongly as they possibly could be.

But maybe it’s easier with small sets of integers. Let’s do something more complicated. There is a library in NumPy that can create random arrays. Here’s how we create an array of 20 random numbers.

In [13]: from RandomArray import *
In [14]: x = random((20,))
In [15]: x[0]
Out[15]: 0.0037765550990622415
In [16]: x[1]
Out[16]: 0.55916408054947242
In [17]: x[19]
Out[17]: 0.36556442411289364

Let’s make it larger – 1000. With 1000 values, we can start to see the shape of the distribution from the histogram (Figure 4.1). All values between 0.0 and 1.0 are equally likely. The distribution has a few bumps, but overall, it’s flat.

In [12]: x=random((1000,))
In [13]: hist(x)
Out[13]:
([90, 96,126,107, 94, 95, 77,114,111, 90,],
 [2.08577149e-004, 1.00040727e-001, 1.99872877e-001, 2.99705027e-001,
 3.99537176e-001, 4.99369326e-001, 5.99201476e-001, 6.99033626e-001,
 7.98865776e-001, 8.98697926e-001,],
<a list of 10 Patch objects>)}
4.2. BUT DO WE BELIEVE IT?

In [14]: savefig("uniform_hist.eps")

![Uniform distribution](image)

Figure 4.1: Uniform distribution

Okay – now x is 1000 random values. Let’s make y two times each value of x. Can correlation still tell that these are similar values?

In [16]: $y = x \times 2$

In [17]: correlation(x, y)

Out[17]: 1.0

Yup. Still can’t fool it.

But those are uniform values. Most values in the real world are normal—they have a mean value that is really common, and other values are much less common. We can generate that from RandomArray, too, using the standard_normal function which assumes a mean of 0.0 and a standard deviation of 1.0.

In [19]: $x = \text{standard_normal}((1000,))$

In [20]: hist(x)

Out[20]:

```python
([ 7, 24, 56, 143, 210, 255, 180, 98, 22, 5,],
 [-3.13742447, -2.52991383, -1.92240319, -1.31489255, -0.70738192, -0.09987128, 0.50763936, 1.11515 , 1.72266064, 2.33017128,],
 <a list of 10 Patch objects>)
```
CHAPTER 4. CORRELATION

In [21]: savefig("normal_hist.eps")

Now, if we look at the distribution of these 1000 values, we see a very different shape. There’s clearly a bump in the middle at the average, and other values are less common (Figure 4.2).

![Figure 4.2: Normal distribution](image)

Cool – so now let’s see if correlation can figure out a relationship with normal values.

In [23]: y = 2 * x
In [24]: correlation(x,y)
Out[24]: 1.0

Yup – it still saw the strong positive correlation.

Let’s try one last trick. Basically, what we have been exploring is where the \(y \) values are a simple factor (multiplication by two) from \(x \). What if there is some other factor at play? What if the \(y \) values \textit{remembered} the last value of \(y \)? \(y_0 \) is just \(2x_0 \). But \(y_1 \) is \(2x_1 + y_1 \), and \(y_2 \) is \(2x_2 + y_1 \). If there’s any other factor at play, even a very simple model of memory, can correlation detect that?

In [25]: memory = 0

In [26]: for i in range(0,1000):
 : y[i] = (2 * x[i]) + memory
 : memory = y[i]

In [27]: correlation(x,y)
Out[27]: 0.035369277425458617
The answer seems to be no. Correlation no longer returns a strong r value, even when the y values are completely defined by the x values. This points out the weakness of correlation—which is also a strength. Correlation can’t pick out complex relationships. It has to be a simple linear relationship or correlation won’t see the relationship. On the other hand, if you do find a significant r, you can be pretty darn sure that you do have two related data sets. If you don’t find a significant r, it doesn’t mean that the values aren’t somehow related—it just means that any relationship that’s there is more complex than simply linear.
5 Text Analysis

One of the techniques used in *Freakonomics* [Levitt and Dubner, 2005] that is unusual for economists (and other social scientists, for that matter) is textual analysis. Levitt and Dubner analyze text strings of answers from students' standardized exams to find cheating teachers in one chapter, and they analyze baby names much later in the book. Computers are absolutely fantastic at textual analysis. We'll only use a couple of techniques in this chapter (enough to do some of what's in *Freakonomics*), but as you'll see, it's amazingly easy to do some really interesting textual analysis.

5.1 Visualizing textual differences: Bacon v. Shakespeare

As you may know, scholars for years have questioned whether Shakespeare really did write the works that he is said to have authored. (See http://www.urbana.k12.oh.us/699/oh/authorship\%20controversy.html for a nice summary of the controversy.) Here he was, the son of two illiterate parents with little formal education. Who would believe him to be the greatest English playwright?

One of the earliest authors thought to have penned Shakespeare’s works was Francis Bacon. Bacon was a much more likely candidate—well-educated, well-spoken, a well-known writer.

We’re not going to come up with anything novel that others haven’t tried, but it’s a fun context for trying out some interesting techniques. Our strategy will be to find something that correlates highly between two Bacon texts and between two Shakespeare texts, and then correlates highly between the Bacon and Shakespeare texts but not other authors’ texts. Fortunately, Project Gutenberg\(^1\) has tons of free books on-line. I grabbed *The Advancement of Learning* by Francis Bacon and *The Essays of Francis Bacon*, and then I grabbed *Macbeth* and *Romeo and Juliet*.

\(^1\)http://www.gutenberg.org
CHAPTER 5. TEXT ANALYSIS

Visualizing the ‘the’

Here’s a stupid but fun hypothesis: Authors use a similar number of the instances of the word ‘the’ in a similar way. It’s silly, but easy to check. We’re going to start checking by simply visualizing the ‘the’s.

Reading the file is easy—we use open, read, close. The find method will find a given string. Even more powerful is replace that will replace all instances of one string with another one.

```
In [31]: file=open("essays-bacon.txt","rt")
In [32]: text=file.read()
In [33]: file.close()
In [34]: pat=" the ">
In [35]: text.find(pat)
Out[35]: 137
In [36]: text[125:145]
Out[36]: ’ing all over the wor’
In [37]: text.replace(pat,"*"+pat+"*")
Out[37]:
In [38]: text[125:150] #NO CHANGE!
Out[38]: ’ing all over the world, b’
```

In [42]: "ababab".replace("a","z") #RETURNS the change
Out[42]: ’zbzbzb’

```
In [43]: newtext=text.replace(pat,"*"+pat+"*")
In [44]: newtext[125:150] #There’s the change!
Out[44]: ’ing all over* the *world,’
```

So here’s what we’re going to do. We’re going to create a file viztext.py and give it a highlight method that copies the text file to HTML. The HTML will reduce the font to its lowest possible size, and make the background black. Then we’ll make the pattern (the word ‘the’) red to make it stand out. Visually, we’ll be able to scan to see patterns of the word pattern we care about.

```
def highlight(basename, pattern):
    file = open(basename+".txt","rt")
    text=file.read()
    file.close()
```
5.1. VISUALIZING TEXTUAL DIFFERENCES: BACON V. SHAKESPEARE

At first I tried it against a white background (Figure 5.1), but found that it wasn't very powerful. The red text pattern didn't stand out as much as against a black background (Figure 5.2).

Figure 5.1: Francis Bacon's essays with white background, 'the' highlighted.

In [53]: reload(viztext)
def highlight(basename, pattern):
 file = open(basename + " .txt ", "rt"")
 text = file.read()
 file.close()
 # Now make the new one
 newpat = ' '+pattern+' '
 html = open(basename + " .html ", "wt")
 html.write("<html><title>"+basename+"</title>
")
 html.write('</body bgcolor="black">')
 html.write("")
 newtext = text.replace(pattern, newpat)
 html.write(newtext)
 html.write("</body>")
 html.close()

The obvious next thing to do is to process both the Essays and Macbeth to compare the visualizations (Figure 5.3). As one might anticipate for a fairly simple and stupid hypothesis – I don't see anything there, do you?

Visualizing the Proper Nouns: Using Regular Expressions

So let's consider a different hypothesis: That a unique characteristic of an author is the number of capitalized words that they use. That indicates the number of sentences, but also indicates the number of proper nouns (e.g., names of things) that are used. Perhaps that's a determining factor?

To locate capitalized words, we need something a bit stronger than a text pattern to search for. Computer scientists use regular expressions to describe patterns of words, not just specific words. This allows for significant flexibility in exploring text. Think of regular expressions as being like mathematical expressions, in that there are constants and operators, but we're describing patterns of letters, not patterns of numbers.

The name of the package that knows about regular expressions in Python is re. You import it to use it.

The match method takes a regular expression and a string as input, then returns a match object that describes the match, or literally None if
5.1. VISUALIZING TEXTUAL DIFFERENCES: BACON V. SHAKESPEARE

Figure 5.2: Francis Bacon's essays with black background, 'the' highlighted

no match is found. The most common uses of the match object is to get the start position and the end position of the match.

Rules for matches

Here are how regular expressions are constructed.

- Any regular character matches only the same regular character. 'M' matches only to 'M', and 'a' matches only to the letter 'a'.

 In [5]: matchobject=re.search("Mark",string)

 In [6]: print matchobject.start()

 17
Figure 5.3: Comparing 'the' patterns in Bacon's *Essays* and Shakespeare's *Macbeth*

In [7]: print matchobject.end()
21

In [8]: string[17:21]
Out[8]: 'Mark'

- A period matches anything.
- A * says "repeat zero or more times whatever came before me." The below example looks for a match that starts with a lowercase 'm' and then is followed by any number of characters—which, of course, matches everything else in the string.

In [9]: matchobject=re.search("m.*",string)
In [10]: print string[matchobject.start():matchobject.end()]
my name: Mark Guzdial. I live in Decatur.

Again, if the match doesn’t work, you get a None that doesn’t under-stand start nor end

In [11]: matchobject=re.search("m.\b",string)

In [12]: print string[matchobject.start():matchobject.end()]
exceptions.AttributeError Traceback (most recent call last)
C:\Documents and Settings\Mark Guzdial\My Documents\Work\CompFreak\<console>
AttributeError: 'NoneType' object has no attribute 'start'

• Putting an "r" before a string treats it as raw mode and backslashes
don’t get interpreted by Python. A b is supposed to find word bound-aries.

In [13]: matchobject=re.search(r"m.\b",string)

In [14]: print matchobject
<_sre.SRE_Match object at 0x00CC7218>

In [15]: print string[matchobject.start():matchobject.end()]
my name: Mark Guzdial. I live in Decatur

• The code S means “anything that isn’t whitespace (tab, return, space.”
The s means whitespace. So the below code looks for a word that
starts with “m” and has any number of characters before a whitespace character.

In [18]: matchobject=re.search(r"m\S*\s",string)

In [19]: print string[matchobject.start():matchobject.end()]
my

• Character classes are in square brackets. [A−Z] only matches a single
uppercase character. [a−zA−Z] matches any character of any case.
The below test looks for an uppercase character at the beginning of a
word, followed by any number of any kinds of letters, but only letters.
Finding Capitalized Words

There are a couple more methods besides search that can be useful in regular expression processing. The first is called split. Given a regular expression and a string, it returns a sequence of substrings of everything that does not match the pattern.

In [13]: chopped = re.split(r"\b[A-Z][a-zA-Z]*", string)

In [14]: chopped[0]
Out[14]: ‘’

In [15]: chopped[1]
Out[15]: ‘ is my name: ’

In [16]: chopped[2]
Out[16]: ‘ ’

In [17]: chopped[3]
Out[17]: ‘.’

Any regular expression in parentheses is grouped. We can later refer to those groupings as 1, 2, and so on here. We can use that with sub which substitutes one pattern with another in a given string.

Here, we use our capitalization pattern to wrap red font coloring around capitalized words.

In [24]: newtext = re.sub(r"\b[A-Z][a-zA-Z]*", r’1ing)

In [25]: newtext
5.2. COUNTING TEXT PATTERNS

```
Out[25]: '<font color=red>This</font> is my name: <font color=red>Mark</font> <font color=red>Guzdial</font>. <font color=red>I</font> live in <font color=red>Decatur</font>.'

Using our newfound capability to replace patterns, we can expand our viztext.py tool to highlight capitals. (Note the import re at the top.)

```python
import re

def highlight(basename, pattern):
 file = open(basename+".txt","rt")
 text=file.read()
 file.close()
 # Now make the new one
 newpat = ''+pattern+''
 html = open(basename+".html","wt")
 html.write("<html><title>"+basename+"</title>\n")
 html.write('"<body bgcolor="black">"')
 html.write(""
 newtext=text.replace(pattern,newpat)
 html.write(newtext)
 html.write("</body>"
 html.close()

def highlightCapitals(basename):
 file = open(basename+".txt","rt")
 text=file.read()
 file.close()
 # Now make the new one
 html = open(basename+".html","wt")
 html.write("<html><title>"+basename+"</title>\n")
 html.write('"<body bgcolor="black">"')
 html.write(""
 html.write("r"("\b[A-Z][a-zA-Z]+")",r'"\1','
 html.write(newtext)
 html.write("</body>
 html.close()

It's pretty easy to use, and the result is more interesting than all the 'the's (Figure 5.4).

In [26]: import viztext

In [27]: viztext.highlightCapitals("essays-bacon")

5.2 Counting Text Patterns

While the visualizations are fun, I doubt that we're going to see any particularly interesting patterns that way. We're going to need to leverage some numeric capability.
CHAPTER 5. TEXT ANALYSIS

Figure 5.4: Visualization of all capitalized letters in the *Essays of Francis Bacon*

Counting our ’the’s

The *split* method that we saw earlier for regular expressions also exists for normal strings, and is pretty darn useful. It breaks up a string into a sequence of substrings, using the provided character as the separator. The below example looks for spaces to break up words.

```python
In [31]: string
Out[31]: 'This is my name: Mark Guzdial. I live in Decatur.'

In [32]: string.split(r' ')  
Out[32]: ['This', 'is', 'my', 'name:', 'Mark', 'Guzdial.', 'I', 'live', 'in', 'Decatur. ']
```

There are 10 strings in the output sequence. That means that there were 9 spaces in the original string.

Let’s use this to split the text into paragraphs, by looking for two returns (string ‘n’) in a row. Then, let’s count the “the’s in each paragraph. Fortunately, there’s a great string method *count* that does just that.

```python
def countText(basename, pattern):
```
5.2. COUNTING TEXT PATTERNS

```python
file = open(basename+".txt","rt")
text=file.read()
file.close()
# Break it up by paragraphs
newtext=text.split('\n') #Two returns = paragraph
# Now, count the number of 'the's in the paragraph
ret = []
for s in newtext:
    ret.append(s.count(pattern))
return ret
```

Now, let's try it.

In [44]: import counttext

In [45]: essaysThe = counttext.countText("essays-bacon"," the ")

In [46]: len(essaysThe)
Out[46]: 508

In [47]: essaysThe[0:10] #What do the answers look like?
Out[47]: [0, 1, 2, 0, 0, 0, 0, 0, 0, 0]

In [48]: advThe = counttext.countText("advancement-learning-bacon"," the ")

In [50]: romeoThe = counttext.countText(" Romeo-juliet-shakespeare"," the ")

In [51]: macbethThe = counttext.countText("macbeth-shakespeare"," the ")

In [52]: len(romeoThe)
Out[52]: 287

In [53]: len(macbethThe)
Out[53]: 271

In [54]: len(advThe)
Out[54]: 597

In [55]: len(essaysThe)
Out[55]: 508

Unfortunately, there are different number of paragraphs in each sample text. So, we'll do a correlation just the first 200 paragraphs. The answer is pretty abysmal. Counting the “the”s doesn't seem to be a useful metric.
In [56]: from correlation import *

In [57]: correlation(romeoThe[0:200],macbethThe[0:200])
Out[57]: 0.039670370779755854

In [58]: correlation(advThe[0:200],essaysThe[0:200])
Out[58]: -0.0085796837192241779

Counting Capitals

Let's try our second hypothesis, counting the number of capitalized letters. To get the number of capital words in each paragraph, we'll generate the re.split of each paragraph, then count the number of match objects returned. One less than that will be the number of capitals.

def countCapitals(basename):
 file = open(basename+".txt","rt")
text=file.read()
file.close()
 # Break it up by paragraphs
newtext=text.split(\n\n)
 # Count the capitals
ret = []
 for para in newtext:
 match = re.split(r"[A-Z][a-z]*",para)
 ret.append(len(match)-1)
 return ret

Now let's try it.

In [61]: advCap = counttext.countCapitals("essays-bacon")

In [62]: len(advCap)
Out[62]: 508

In [63]: advCap[0:10]
Out[63]: [9, 1, 3, 9, 8, 7, 5, 1, 2, 4]

In [64]: essaysCap = counttext.countCapitals("advancement-learning-bacon")

In [65]: romeoCap = counttext.countCapitals("romeo-juliet-shakespeare")

In [66]: macbethCap = counttext.countCapitals("macbeth-shakespeare")

In [67]: correlation(advCap[0:200],essaysCap[0:200])
Out[67]: -0.10076023917690945

In [68]: correlation(romeoCap[0:200],macbethCap[0:200])
Out[68]: 0.016919364776092155
Eww – that correlation isn’t very good either. Good thing we’re not Shakespearean scholars...
6 Hypothesis Testing

In our text analysis, we ran against the problem of having to compare sequences of numbers that weren’t paired. Correlations were really the wrong things to use there. We had no reason to believe that paragraph-by-paragraph, our metrics (counting “the”s and capitalized words) would change in-step.

What we really wanted to ask was if the sets were different, not in lock-step. What do we mean by different? Well, are there means different? Are the averages of each set significantly different? That’s what we’re going to test in this chapter. We’re going to use sets that have the same number of elements, but we’ll still be asking about means.

6.1 The Context: Elections and Unemployment Rates

One of the claims of political pundits is that what the US people are voting on in a presidential election is whether they’re doing better or worse than they were four years previously. Let’s test that.

- In 1996, Clinton was re-elected over Dole – the American people chose to stick with their party.
- In 2000, Bush won over Gore (even though Gore won the popular vote). The American people switched parties. Were they better off than they were 4 years previously?
- In 2004, Bush won over Kerry. The American people stuck with the Republican party. Were they about the same as they were four years previously?

I downloaded a data set from the US Bureau of Labor Statistics of US Unemployment Data (one measure of “doing better”) over many years.

```
In [70]: import csvfile

In [71]: file = csvfile.CSVfile("USUnemploymentRate.csv")

In [72]: file.next()
Out[72]:
```
CHAPTER 6. HYPOTHESIS TESTING

['Annual': '', 'Apr': '3.9', 'Aug': '3.9', 'Dec': '4', 'Feb': '3.8', 'Jan': '3.4', 'Jul': '3.6', 'Jun': '3.6', 'Mar': '4', 'May': '3.5', 'Nov': '3.8', 'Oct': '3.7', 'Sep': '3.8', 'Year': '1948']

In [73]: file.next()
Out[73]:

['Annual': '', 'Apr': '5.3', 'Aug': '6.8', 'Dec': '6.6', 'Feb': '4.7', 'Jan': '4.3', 'Jul': '6.7', 'Jun': '6.2', 'Mar': '5', 'May': '6.1', 'Nov': '6.4', 'Oct': '7.9', 'Sep': '6.6', 'Year': '1949']

Let's use these data to compare 1996, 2000, and 2004. Were they really different? Does the direction of difference match the election results?

6.2 T-Test

A T-Test tells us whether the averages of two sets are significantly different or not. The hypothesis we're testing is whether they're the same \((H_0) \), or different \((H_1) \).

Here's the process for a t-test computation.

- We need the averages \((\bar{x}_1 \text{ and } \bar{x}_2) \) of each group. We know how to do that already.

- We need the variance \((s_1^2 \text{ and } s_2^2) \) of each group. We can chop that out of our standard deviation function that we created earlier.

- We need the pooled sample variance. This is:
6.2. T-TEST

\[s_p^2 = \frac{(N_{\text{group1}} - 1)s_1^2 + (N_{\text{group2}} - 1)s_2^2}{(N_1 + N_2) - 2} \] (6.1)

The overall \(t \) statistic is then:

\[\frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}} \] (6.2)

The degrees of freedom are \(N_1 + N_2 - 1 \).

How to do a T-Test in Python

Here's an implementation of all of that in Python.

```python
def average(sequence):
    return (1.0*sum(sequence))/len(sequence)

def variance(sequence):
    ave = average(sequence)
    # Compute the mean squared difference
    diffs = 1.0
    for num in sequence:
        diffs = diffs + pow((ave-num),2)
    # Compute the variance
    variance = diffs/(len(sequence)-1)
    return variance

def ttest(seq1,seq2):
    x1 = average(seq1)
    x2 = average(seq2)
    s1 = variance(seq1)
    s2 = variance(seq2)
    n1 = len(seq1)
    n2 = len(seq2)
    pooleds = (((n1-1)*s1)+((n2-1)*s2))/((n1+n2)-2)
    t=(x1-x2)/pow(pooleds*(1/n1)+(1/n2),0.5)
    return t
```

And putting it all together, with reading our unemployment rates, we get:

```python
from pylab import *
import csvfile

def average(sequence):
    return (1.0*sum(sequence))/len(sequence)

def variance(sequence):
    ave = average(sequence)
    # Compute the mean squared difference
```
diffs = 1.0
for num in sequence:
 diffs = diffs + pow((ave - num), 2)
Compute the variance
variance = diffs / (len(sequence) - 1)
return variance

def ttest(seq1, seq2):
x1 = average(seq1)
x2 = average(seq2)
s1 = variance(seq1)
s2 = variance(seq2)
n1 = len(seq1)
n2 = len(seq2)
pooleds = (((n1-1)*s1)+((n2-1)*s2))/((n1+n2)-2)
t = (x1 - x2) / pow(pooleds * ((1.0/n1)+(1.0/n2)), 0.5)
return t

unemdata = csdfile.CSVfile("USUnemploymentRate.csv")
months=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

Let's get 1996 year.
rates1996 = []
getRows returns a set. We want just one, the 0th
row1996 = unemdata.getRows('Year', '1996')[0]
for item in months:
 rates1996.append(csdfile.number(row1996[item]))

unemdata.rewind()
Let's get 2000 year.
rates2000 = []
row2000 = unemdata.getRows('Year', '2000')[0]
for item in months:
 rates2000.append(csdfile.number(row2000[item]))

unemdata.rewind()
Let's get 2004 year.
rates2004 = []
row2004 = unemdata.getRows('Year', '2004')[0]
for item in months:
 rates2004.append(csdfile.number(row2004[item]))

print "1996 results"
print "average", average(rates1996)
print "variance", variance(rates1996)
print "number", len(rates1996)

print "2000 results"
print "average", average(rates2000)
print "variance", variance(rates2000)
6.3 ANOVA: ANALYSIS OF VARIANCE

print "number", len(rates2000)
print "2004 results"
print "average", average(rates2004)
print "variance", variance(rates2004)
print "number", len(rates2004)

And here's the run:

In [107]: run ttest-electoral.py
1996 results
average 5.40833333333
variance 0.120833333333
number 12
2000 results
average 3.96666666667
variance 0.0987878787879
number 12
2004 results
average 5.51666666667
variance 0.105151515152
number 12
1996–2000 ttest 10.6565919854
2000–2004 ttest –11.8897236086

This suggests that 2000 was much worse (on average) than 1996, and 2004 was better than 2000. But was it significant? We can check a t-test table\(^1\), assuming an \(\alpha\) value (willingness to be wrong) of 0.05 and \((12 + 12 − 1 = 23)\) 23 degrees of freedom, we get a \(t_{\text{critical}}\) value of 1.714. We reject \(H_0\) if our t-value is greater than \(t_{\text{critical}}\). Since our t-value is way larger, we say that the difference is significant at the 0.05 level.

That means that the 2000 election matched the pundit's prediction – people were worse off, so they changed parties (ignoring the popular vs. electoral vote complexity). In 2004, they were markedly better than they were in 2000, so they stuck with the same party.

6.3 ANOVA: Analysis of Variance

Another way of testing the difference between groups is with an ANOVA or Analysis of Variance. Here, we look at variance more, and we use an \(f\) statistic rather than the \(t\) statistic (that is, the lookup table). One thing that's cool about ANOVA is that we can use it for more than two groups, to

\(^1\)We're using http://www.socr.ucla.edu/Applets.dir/T-table.html.
see if there is any difference anywhere. But we’ll use it just for two groups here.

In ANOVA, we need the totals of the groups, the sample sizes, and the means, but also the grand total (of all the groups), the total sample size (of all groups), and the grand mean which is the grand total divided by the total sample size. Strangely enough, we don’t actually use the variance in the Analysis of Variance (ANOVA) process.

Here’s the process:

• We compute the SSB, the sum of squares between groups.

$$SSB = (N_1(x_1 - \text{GrandMean}))^2 + (N_2(x_2 - \text{GrandMean}))^2$$

(6.3)

(You can easily see how this would extend to more groups.)

• We compute the SSW, the sum of squares within groups. For all items in all groups,

$$SSW = (item_1 - (\text{mean of item 1}'_{sgroup}))^2 + (item_2 - (\text{mean of item 2}'_{sgroup})) + \ldots$$

(6.4)

• We then compute the MSB, mean square between groups. That’s simpler to compute:

$$MSB = \frac{SSB}{\text{number of groups} - 1}$$

(6.5)

• We then compute the MSW, mean square within groups.

$$MSW = \frac{SSW}{(\text{total sample size}) - (\text{number of groups})}$$

(6.6)

• The F-statistic is:

$$F = \frac{MSB}{MSW}$$

(6.7)

• The degrees of freedom between groups is the number of groups - 1. The degrees of freedom for the total is the total sample size - 1. The degrees of freedom within groups is the degrees of freedom for the total minus the degrees of freedom between groups. I find on some F-statistic tables\(^2\), the between groups is called $df1$ and the within groups is called $df2$.

\(^2\)As at \url{http://www.statsoft.com/textbook/sttable.html#f05}
6.3. ANOVA: ANALYSIS OF VARIANCE

How to do an ANOVA in Python

Here's how we map that process to Python.

```python
from pylab import *
import csvfile

def average(sequence):
    return (1.0*sum(sequence))/len(sequence)

def variance(sequence):
    ave = average(sequence)
    # Compute the mean squared difference
    diffs = 1.0
    for num in sequence:
        diffs = diffs + pow((ave-num),2)
    # Compute the variance
    variance = diffs/(len(sequence)-1)
    return variance

def ttest(seq1,seq2):
    x1 = average(seq1)
    x2 = average(seq2)
    s1 = variance(seq1)
    s2 = variance(seq2)
    n1 = len(seq1)
    n2 = len(seq2)
    pooleds = (((n1-1)*s1)+((n2-1)*s2))/((n1+n2)-2)
    t=(x1-x2)/pow(pooleds+((1.0/n1)+(1.0/n2)),0.5)
    return t

def anova(seq1,seq2):
    sum1 = sum(seq1)
    sum2 = sum(seq2)
    grandtotal = sum1 + sum2
    n1 = len(seq1)
    n2 = len(seq2)
    totalsize = n1+n2
    x1 = average(seq1)
    x2 = average(seq2)
    grandmean = float(grandtotal)/totalsize
    SSB = (n1*pow(x1-grandmean,2))+(n2*pow(x2-grandmean,2))
    SSW = 0
    for i in seq1:
        SSW=SSW+pow(i-x1,2)
    for i in seq2:
        SSW=SSW+pow(i-x2,2)
    MSB=SSB/1
    MSW=float(SSW)/(totalsize-2)
    return MSB/MSW
```

6.3. ANOVA: ANALYSIS OF VARIANCE

How to do an ANOVA in Python

Here's how we map that process to Python.

```python
from pylab import *
import csvfile

def average(sequence):
    return (1.0*sum(sequence))/len(sequence)

def variance(sequence):
    ave = average(sequence)
    # Compute the mean squared difference
    diffs = 1.0
    for num in sequence:
        diffs = diffs + pow((ave-num),2)
    # Compute the variance
    variance = diffs/(len(sequence)-1)
    return variance

def ttest(seq1,seq2):
    x1 = average(seq1)
    x2 = average(seq2)
    s1 = variance(seq1)
    s2 = variance(seq2)
    n1 = len(seq1)
    n2 = len(seq2)
    pooleds = (((n1-1)*s1)+((n2-1)*s2))/((n1+n2)-2)
    t=(x1-x2)/pow(pooleds+((1.0/n1)+(1.0/n2)),0.5)
    return t

def anova(seq1,seq2):
    sum1 = sum(seq1)
    sum2 = sum(seq2)
    grandtotal = sum1 + sum2
    n1 = len(seq1)
    n2 = len(seq2)
    totalsize = n1+n2
    x1 = average(seq1)
    x2 = average(seq2)
    grandmean = float(grandtotal)/totalsize
    SSB = (n1*pow(x1-grandmean,2))+(n2*pow(x2-grandmean,2))
    SSW = 0
    for i in seq1:
        SSW=SSW+pow(i-x1,2)
    for i in seq2:
        SSW=SSW+pow(i-x2,2)
    MSB=SSB/1
    MSW=float(SSW)/(totalsize-2)
    return MSB/MSW
```
Then, here's the whole thing, including the reading of the data again.

```python
from pylab import *
import csvfile

def average(sequence):
    return (1.0*sum(sequence))/len(sequence)

def variance(sequence):
    ave = average(sequence)
    # Compute the mean squared difference
    diffs = 1.0
    for num in sequence:
        diffs = diffs + pow((ave-num),2)
    # Compute the variance
    variance = diffs/(len(sequence)-1)
    return variance

def ttest(seq1,seq2):
    x1 = average(seq1)
    x2 = average(seq2)
    s1 = variance(seq1)
    s2 = variance(seq2)
    n1 = len(seq1)
    n2 = len(seq2)
    pooleds = (((n1-1)*s1)+((n2-1)*s2))/((n1+n2)-2)
    t=(x1-x2)/pow(pooleds*(((1.0/n1)+(1.0/n2)) ,0.5)
    return t

def anova(seq1,seq2):
    sum1 = sum(seq1)
    sum2 = sum(seq2)
    grandtotal = sum1 + sum2
    n1 = len(seq1)
    n2 = len(seq2)
    totalsize = n1+n2
    x1 = average(seq1)
    x2 = average(seq2)
    grandmean = float(grandtotal)/totalsize
    SSB = (n1*pow(x1-grandmean,2))+(n2*pow(x2-grandmean,2))
    SSW = 0
    for i in seq1:
        SSW=SSW+pow(i-x1,2)
    for i in seq2:
        SSW=SSW+pow(i-x2,2)
    MSB=SSB/1
    MSW=float(SSW)/(totalsize-2)
    return MSB/MSW

unemdata = csvfile.CSVfile("USUnemploymentRate.csv")
```
6.3. ANOVA: ANALYSIS OF VARIANCE

months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

Let's get 1996 year.
rates1996 = []
getRows returns a set. We want just one, the 0th
row1996 = unemdata.getRows('Year', '1996')[0]
for item in months:
 rates1996.append(csvfile.number(row1996[item]))

unemdata.rewind()
Let's get 2000 year.
rates2000 = []
row2000 = unemdata.getRows('Year', '2000')[0]
for item in months:
 rates2000.append(csvfile.number(row2000[item]))

unemdata.rewind()
Let's get 2004 year.
rates2004 = []
row2004 = unemdata.getRows('Year', '2004')[0]
for item in months:
 rates2004.append(csvfile.number(row2004[item]))

print "1996 results"
print "average", average(rates1996)
print "variance", variance(rates1996)
print "number", len(rates1996)

print "2000 results"
print "average", average(rates2000)
print "variance", variance(rates2000)
print "number", len(rates2000)

print "2004 results"
print "average", average(rates2004)
print "variance", variance(rates2004)
print "number", len(rates2004)

And here are the results:

1996 results
average 5.40833333333
variance 0.120833333333
number 12

2000 results
average 3.96666666667
variance 0.0987878787879
number 12
2004 results
average 5.51666666667
variance 0.105151515152
number 12
1996–2000 anova 659.75751503
2000–2004 anova 1303.2739726

The degrees of freedom between groups is 1 \((2\text{groups} - 1)\). The degrees of freedom total is 23 \((24 - 1)\). The degrees of freedom within groups is 22 \((23 - 1)\). The F-statistic there is 4.3009. These values (659 and 1303) are, ahem, a tad bit larger. So, we come up with the same result as with the t-test.

So, for the 2000 and 2004 elections, the pundit’s prediction held true. As goes the unemployment rate, so goes the presidential vote.
A Program Listings

A.1 CVSfile

CVSfile

CSVfile — a front end to CVS

```python
import csv

def number(input, default=-1):
    try:
        return float(input)
    except:
        return default

class CSVfile:
    def __init__(self, filename):
        self.filename = filename
        self.rewind();

    def rewind(self):
        self.fp = open(self.filename, "rb")
        headerReader = csv.reader(self.fp)
        self.headers = headerReader.next()
        self.dataReader = csv.DictReader(self.fp, fieldnames=self.headers)

    def next(self):
        return self.dataReader.next()

    def getRows(self, fieldName, value):
        ret = []
        for row in self.dataReader:
            if row[fieldName] == value:
                ret.append(row)
        return ret
```

Program Example #0
def getColumn(self, fieldName):
 ret = []
 for row in self.dataReader:
 ret.append(row.get(fieldName))
 return map(number, ret)

A.2 fancierplot.py – a run-able plot

Program Example #1

fancierplot.py

from pylab import *
import csvfile
popdata = csvfile.CSVfile("pops−2000.csv")
pops = popdata.getColumn("POP")
spops=sort(pops)
plot(spops[1:], marker="o", color="r")
title('Populations of countries in the year 2000')
xlabel('Countries in increasing order of population')
ylabel('Population in millions')
grid(True)
show()

Program Example #2

us_uk_pop_plot.py

from pylab import *
import csvfile
natdata = csvfile.CSVfile("us−uk−1990−2000.csv")
usdata = natdata.getRows('country','United States')
natdata.rewind()
ukdata = natdata.getRows('country','United Kingdom')

#Get the populations
uspops = []
for row in usdata:
 uspops.append(csvfile.number(row[\'POP\']))

ukpops = []
for row in ukdata:
 ukpops.append(csvfile.number(row["POP"]))
years=range(1990,2001)
print "US",uspops,len(uspops)
print "UK",ukpops,len(ukpops)
print "Years",years,len(years)

plot(years,uspops,'r--o',years,ukpops,'b-x')
legend(('US Population','UK Population'),loc='center right')
title('Populations of US and UK 1990–2000')
xlabel('Years')
ylabel('Population in millions')
grid(True)
savefig("us_uk_pop_plot.png")
show()

us_uk_pop_plot2.py

from pylab import *
import csvfile

natdata = csvfile.CSVfile("us-uk-1990-2000.csv")
usdata = natdata.getRows('country','United States')
natdata.rewind()
ukdata = natdata.getRows('country','United Kingdom')

#Get the populations
This time, making SURE that they're in year-order
years=range(1990,2001)
uspops = []
for y in years:
 for row in usdata:
 if row['year']==str(y): #Items in rows are strings
 uspops.append(csvfile.number(row["POP"]))
 break #Leave the row loop
ukpops = []
for y in years:
 for row in ukdata:
 if row['year']==str(y):
 ukpops.append(csvfile.number(row["POP"]))
 break

Top subplot: 2 rows, 1 column, subplot #1
subplot(2,1,1)
plot(years,uspops,'r--o')
APPENDIX A. PROGRAM LISTINGS

```python
import numpy as np
import matplotlib.pyplot as plt

xlabel('Years')
ylabel('Population in millions')
grid(True)

subplot(2,1,2)
plot(years, ukpops, 'b-x')
title('Population UK 1990–2000')
xlabel('Years')
ylabel('Population in millions')
grid(True)

savefig("us_uk_pop_plot2.eps")
show()
```

A.4 Exploring British and American Petroleum Company Stock Prices

Program Example #4

bpStdDev1990.py—computing descriptive statistics of BP and XOM

```python
from pylab import *
import csvfile

def average(sequence):
    return (1.0*sum(sequence))/len(sequence)

def std_dev(sequence):
    ave = average(sequence)
    # Compute the mean squared difference
    diffs = 1.0
    for num in sequence:
        diffs = diffs + pow((ave-num),2)
    # Compute the variance
    variance = diffs/len(sequence)
    # Return the square root of the variance
    return pow(variance,0.5)

bpdata = csvfile.CSVfile("BritishPetroleum-BP-table.csv")

# Let's get the 1990 year.
closes = []
for row in bpdata.dataReader:
```
A.4. EXPLORING BRITISH AND AMERICAN PETROLEUM COMPANY STOCK PRICES

```python
if row['Date'].endswith('90 '):
closes.append(csvfile.number(row['Close']))

# Return the average
print "*** BP ***
print "Closing values", closes
print "Average:", average(closes)
print "Standard Deviation:", std_dev(closes)

amdata = csvfile.CSVfile("Exxon-Mobil-XOM-table.csv")

# Let's get the 1990 year.
closes = []
for row in amdata.dataReader:
    if row['Date'].endswith('90 '):
closes.append(csvfile.number(row['Close']))

# Return the average
print "*** Exxon/Mobil ***
print "Closing values", closes
print "Average:", average(closes)
print "Standard Deviation:", std_dev(closes)
```

Program Example #5: *bpHist1990.py—computing a histogram of each*

```python
from pylab import *
import csvfile

bpdata = csvfile.CSVfile("BritishPetroleum-BP-table.csv")

# Let's get the 1990 year.
closes = []
for row in bpdata.dataReader:
    if row['Date'].endswith('90 '):
closes.append(csvfile.number(row['Close']))

subplot(2,1,1)
title("BP stock in 1990—Histogram")
hist(closes)

amdata = csvfile.CSVfile("Exxon-Mobile-XOM-table.csv")

# Let's get the 1990 year.
closes = []
```
for row in amdata.dataReader:
 if row['Date'].endswith('90'):
 closes.append(csvfile.number(row['Close']))

subplot(2,1,2)
title("Amoco/Mobil stock in 1990−Histogram")
hist(closes)
savefig("BP_AM_hist.eps")
show()

Program Example #6

bpAmCorrel1990.py–computing a correlation between them

from pylab import *
import csvfile

def average(sequence):
 return (1.0*sum(sequence))/len(sequence)

def std_dev(sequence):
 ave = average(sequence)
 # Compute the mean squared difference
 diffs = 1.0
 for num in sequence:
 diffs = diffs + pow((ave-num),2)
 # Compute the variance
 variance = diffs/len(sequence)
 # Return the square root of the variance
 return pow(variance,0.5)

def correlation(x,y):
 n = len(x)
 if n != len(y):
 print "Uh−oh! x and y must be paired values!"
 return 0.0
 # Compute the numerator
 prod_pairs = 0
 for i in range(0,n):
 prod_pairs = prod_pairs + (x[i]*y[i])
 numerator = n*prod_pairs - (sum(x)*sum(y))
 # Compute the denominator
 x_square = 0
 for i in range(0,n):
 x_square = x_square + pow(x[i],2)
 y_square = 0
A.5. TEXT ANALYSIS: SHAKESPEARE OR BACON?

```python
for i in range(0, n):
    y_square = y_square + pow(y[i], 2)
    denom_term1 = ((n*x_square) - pow(sum(x), 2))
    denom_term2 = ((n*y_square) - pow(sum(y), 2))
    denominator = pow(denom_term1 + denom_term2, 0.5)
return numerator/denominator
```

```python
bpdata = csvfile.CSVfile("British Petroleum–BP–table.csv")

# Let's get the 1990 year.
bpcloses = []
for row in bpdata.dataReader:
    if row['Date'].endswith('90'):
        bpcloses.append(csvfile.number(row['Close']))

amdata = csvfile.CSVfile("Exxon–Mobile–XOM–table.csv")

# Let's get the 1990 year.
amcloses = []
for row in amdata.dataReader:
    if row['Date'].endswith('90'):
        amcloses.append(csvfile.number(row['Close']))

print "BP closing values:", bpcloses
print "average", average(bpcloses)
print "number", len(bpcloses)
print "standard deviation", std_dev(bpcloses)

print "Exxon–Mobile (American) closing values:", amcloses
print "average", average(amcloses)
print "number", len(amcloses)
print "standard deviation", std_dev(amcloses)

print "Correlation is ", correlation(bpcloses, amcloses)
```

A.5 Text Analysis: Shakespeare or Bacon?
def highlight(basename, pattern):
 file = open(basename + " . txt" , "rt")
 text = file.read()
 file.close()
 # Now make the new one
 newpat = '' + pattern + ''
 html = open(basename + " . html" , "wt")
 html.write("<html><title>" + basename + "</title>\n")
 html.write('</body bgcolor="black">')
 html.write("")
 newtext = text.replace(pattern, newpat)
 html.write(newtext)
 html.write("</body>")
 html.close()

def highlightCapitals(basename):
 file = open(basename + " . txt" , "rt")
 text = file.read()
 file.close()
 # Now make the new one
 html = open(basename + " . html" , "wt")
 html.write("<html><title>" + basename + "</title>\n")
 html.write('</body bgcolor="black">')
 html.write("")
 newtext = re.sub(r'^([a-zA-Z]+)\n', r' \1', text)
 html.write(newtext)
 html.write("</body>")
 html.close()

Program Example #8

counttext.py

import re

def countText(basename, pattern):
 file = open(basename + " . txt" , "rt")
 text = file.read()
 file.close()
 # Break it up by paragraphs
 newtext = text.split('\n\n') # Two returns = paragraph
 # Now, count the number of 'the's in the paragraph
 ret = []
 for s in newtext:
 ret.append(s.count(pattern))
 return ret
A.6. HYPOTHESIS TESTING: DOES THE UNEMPLOYMENT RATE MAKE THE PRESIDENT?

```python
def countCapitals(basename):
    file = open(basename+".txt","rt")
    text=file.read()
    file.close()
    # Break it up by paragraphs
    newtext=text.split('\n\n')
    # Count the capitals
    ret = []
    for para in newtext:
        match = re.split(r"b[A-Z][a-zA-Z]*",para)
        ret.append(len(match)-1)
    return ret
```

A.6 Hypothesis Testing: Does the unemployment rate make the President?

Program Example #9

electoral.py – t-test and ANOVA predicting electoral results

```python
from pylab import *
import csvfile

def average(sequence):
    return (1.0*sum(sequence))/len(sequence)

def variance (sequence):
    ave = average(sequence)
    # Compute the mean squared difference
    diffs = 1.0
    for num in sequence:
        diffs = diffs + pow((ave-num),2)
    # Compute the variance
    variance = diffs/(len(sequence)-1)
    return variance

def ttest(seq1,seq2):
    x1 = average(seq1)
    x2 = average(seq2)
    s1 = variance(seq1)
    s2 = variance(seq2)
    n1 = len(seq1)
    n2 = len(seq2)
    pooleds = (((n1-1)*s1)+((n2-1)*s2))/((n1+n2)-2)
    t=(x1-x2)/pow(pooled*(1.0/n1)+(1.0/n2),0.5)
```
def anova(seq1, seq2):
 sum1 = sum(seq1)
 sum2 = sum(seq2)
 grandtotal = sum1 + sum2
 n1 = len(seq1)
 n2 = len(seq2)
 totalsize = n1 + n2
 x1 = average(seq1)
 x2 = average(seq2)
 grandmean = float(grandtotal)/totalsize
 SSB = (n1*pow(x1-grandmean, 2))+(n2*pow(x2-grandmean, 2))
 SSW = 0
 for i in seq1:
 SSW = SSW+pow(i-x1, 2)
 for i in seq2:
 SSW = SSW+pow(i-x2, 2)
 MSB=SSB/1
 MSW=float(SSW)/(totalsize-2)
 return MSB/MSW

unemdata = csvfile.CSVfile("USUnemploymentRate.csv")
months=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

Let's get 1996 year.
rates1996 = []
getRows returns a set. We want just one, the 0th
row1996 = unemdata.getRows('Year','1996')[0]
for item in months:
 rates1996.append(csvfile.number(row1996[item]))

unemdata.rewind()
Let's get 2000 year.
rates2000 = []
row2000 = unemdata.getRows('Year','2000')[0]
for item in months:
 rates2000.append(csvfile.number(row2000[item]))

unemdata.rewind()
Let's get 2004 year.
rates2004 = []
row2004 = unemdata.getRows('Year','2004')[0]
for item in months:
 rates2004.append(csvfile.number(row2004[item]))

print "1996 results"
print "average",average(rates1996)
print "variance",variance(rates1996)
print "number",len(rates1996)
A.6. HYPOTHESIS TESTING: DOES THE UNEMPLOYMENT RATE MAKE THE PRESIDENT?

print "2000 results"
print "average", average(rates2000)
print "variance", variance(rates2000)
print "number", len(rates2000)

print "2004 results"
print "average", average(rates2004)
print "variance", variance(rates2004)
print "number", len(rates2004)

Bibliography

Index

alpha, 59
alpha value, 34
Analysis of Variance, 59
ANOVA, 59
append, 11
arange, 17
average, 25, 26
average of the squared differences, 27
background, 42
Bacon, Francis, 41
 The Advancedment of Learning, 41
 The Essays Of, 41
BP, 25
British Petroleum, 27
causal, 35
cd, 5, 19
change directory, 5
class, 9
close, 42
color, 19
Comma Separated Values, 6
Command Prompt, 2
correlation, 31, 35
count, 50
CSV, 6
csv.DictReader, 7
csv.reader, 6
dataReader, 26
degrees of freedom, 35
t-test, 57
descriptive statistics, 25
df, 35
df1, 60
df2, 60
dictionary, 8
directory, 5
 changing, 5
distribute, 16
dot operator, 6
Encapsulated Postscript, 14
end, 45
EPS, 14
Exxon, 27
f statistic, 59
fields, 9
files
 reading, 5, 42
 writing, 5
find, 42
floating point numbers, 17
folder, 5
font size, 42
for, 11
from-import, 6
get, 8
column, 8, 11
 defined, 11
columns, 8, 10
 defined, 10
usage, 8
global, 6
grand mean, 60
grand total, 60
grouped, 48
help, 22, 29
highlight, 42
histogram, 29
HTML background, 42
import, 6, 19
 for running files, 19
 from, 6
init method, 10
instance variable, 10
instance variables, 9
integers, 17
IPython, 19
iPython, 2
JPEG, 14
legend, 21
 location, 21
linestyle, 19
list, 10
loc, 21
Macbeth, 41
map, 11
marker, 19
markeredgecolor, 19
markerfacecolor, 19
markersize, 19
match, 44
match object, 44
Matplotlib, 13
 usage, 13
mean, 25
 differences, 55
means, 55
memory, 38
methods, 9
Mobil, 27
module, 6
MSB, 60
MSW, 60
next, 10
None, 44
normal, 37
number, 10
NumPy, 1, 36
 objects, 9
 one-tailed, 34
open, 42
open(), 5
paired, 32
Pearson Product Moment Correlation, 34
plot, 13, 17
 saving, 14
 showing, 14
 usage, 13
PNG, 14
pooled sample variance, 56
pow, 28
print, 11
 for debugging, 21
python, 5
raise, 14
raw mode, 47
re, 44
read, 42
read(), 5
reader, 7
reading text files, 42
regular expressions, 44
 grouping, 48
 match, 44
reload, 6, 19
replace, 42
rewind, 9
Romeo and Juliet, 41
run, 19
 via import, 19
savefig, 14
SciPy, 1
self, 10
Shakespeare, William, 41
shape, 30
show(), 14
significance chance, 34
significance level, 34
significant, 34
sin, 17
slicing, 13
 usage, 16
slope, 24
sort, 15
split, 48
spread, 27
SSB, 60
SSW, 60
standard deviation, 27
standard normal, 37
start, 45
Students T-Test, 56
sub, 48
subplot, 23
sum, 25

t statistic, 59
T-Test, 56
t-test
 degrees of freedom, 57
Terminal, 3
textual analysis, 41
The Advancement of Learning, 41
The Essays of Francis Bacon, 41
title, 19
total sample size, 60
traceback, 14
tuple, 19
two-tailed, 34

ufunc, 17
universal function, 17

variance, 27

WinEdt, 18

xlabel, 19
XOM, 27

ylabel, 19